4.8 Article

Significant Stability Enhancement in High-Efficiency Polymer:Fullerene Bulk Heterojunction Solar Cells by Blocking Ultraviolet Photons from Solar Light

Journal

ADVANCED SCIENCE
Volume 3, Issue 4, Pages -

Publisher

WILEY
DOI: 10.1002/advs.201500269

Keywords

degradation; morphology; polymer:fullerene solar cells; stability; UV light

Funding

  1. Korean Government [NRF_2015R1A2A2A01003743, NRF_2014R1A1A3051165]
  2. Korean Government (Human Resource Training Project for Regional Innovation_MOE) [NRF_2014H1C1A1066748]
  3. Korean Government (Basic Science Research Program) [2009-0093819]
  4. Korean Government (Basic Research Laboratory Program) [2011-0020264]
  5. National Research Foundation of Korea [2011-0020264] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Achievement of extremely high stability for inverted-type polymer:fullerene solar cells is reported, which have bulk heterojunction (BHJ) layers consisting of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b]dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM), by employing UV-cut filter (UCF) that is mounted on the front of glass substrates. The UCF can block most of UV photons below 403 nm at the expense of approximate to 20% reduction in the total intensity of solar light. Results show that the PTB7-Th:PC71BM solar cell with UCF exhibits extremely slow decay in power conversion efficiency (PCE) but a rapidly decayed PCE is measured for the device without UCF. The poor device stability without UCF is ascribed to the oxidative degradation of constituent materials in the BHJ layers, which give rise to the formation of PC71BM aggregates, as measured with high resolution and scanning transmission electron microscopy and X-ray photoelectron spectroscopy. The device stability cannot be improved by simply inserting poly(ethylene imine) (PEI) interfacial layer without UCF, whereas the lifetime of the PEI-inserted PTB7-Th:PC71BM solar cells is significantly enhanced when UCF is attached.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available