4.5 Article

Ambient temperature synthesis of citrate stabilized and biofunctionalized, fluorescent calcium fluoride nanocrystals for targeted labeling of cancer cells

Journal

BIOMATERIALS SCIENCE
Volume 1, Issue 3, Pages 294-305

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2bm00127f

Keywords

-

Funding

  1. Department of Science & Technology, Government of India [SR/NM/PG-02/08]

Ask authors/readers for more resources

Targeted biological contrast agents are emerging as promising candidates in the field of cancer theragnostics. Herein, we report an ambient temperature synthesis of a nanosized, antibody functionalized lanthanide doped CaF2 biolabel and demonstrate in vitro its potential for cancer cell targeting efficacy and specificity. Monodispersed citrate stabilized lanthanide (Eu3+) doped CaF2 nanoparticles with size similar to 25 nm, exhibiting strong fluorescent emission at 612 nm, were prepared using an aqueous wet chemical route at room temperature. Biofunctionalization of the fluorescent nanoparticles using an anti-EGFR antibody through EDC-NHS coupling chemistry enabled targeting of EGFR over-expressing cells. The nanobioconjugates showed preferential binding to EGFR(+ve) oral epithelial carcinoma cells (KB) and human epidermoid carcinoma cells (A431) with no accumulation onto EGFR(-ve) non-cancerous NIH 3T3 cells. The fluorescence was maintained after the bioconjugation as well as after attachment to the cancer cells, demonstrating their potential as targeted biolabels. Cytotoxicity evaluation with several cancerous (A431, KB) and non-cancerous (NIH 3T3, L929) cell lines revealed no toxicity at concentrations up to 1 mM. Thus, the fluorescence characteristics and biocompatibility, coupled with the molecular receptor targeting capability, suggest the potential use of CaF2 in the field of bioimaging.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available