4.6 Article

Multitasking Shared Aperture Enabled with Multiband Digital Coding Metasurface

Journal

ADVANCED OPTICAL MATERIALS
Volume 6, Issue 21, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adom.201800657

Keywords

illusion optics; multiband digital coding metasurface; multitasking metasurface; orbital angular momentum; scattering reduction

Funding

  1. National Key Research and Development Program of China [2017YFA0700201, 2017YFA0700202, 2017YFA0700203]
  2. National Natural Science Foundation of China [61631007, 61571117, 61501112, 61501117, 61522106, 61731010, 61735010, 61722106, 61701107, 61701108]
  3. 111 Project [111-2-05]

Ask authors/readers for more resources

Digital coding metasurface is aimed at building up a bridge between physics and information science. Higher information capacity of the digital coding metasurface means more powerful ability to control electromagnetic waves. Here, a multiband digital coding metasurface to improve the information capacity is proposed. The digital coding structures can provide 2-bit digital states at three separate frequency bands (C, X, and Ku). It is shown that the proposed metasurface can eliminate the in-band interference and path degradation by introducing an operator of frequency-hopping spread spectra, from which flexible beam controls can be designed independently in every operating band. To demonstrate the capability and the compatibility, a multifunctional digital coding metasurface which can perform optical illusion, scattering reduction, and generation of orbital angular momentum in a shared aperture is presented. Numerical simulations and measured results have very good agreements, verifying excellent performance of the multiband digital coding metasurface. The proposed method opens opportunities to improve the information capacity of the digital coding metasurface and paves novel ways to multitasking systems on photonic applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available