4.6 Article

Sol-Gel Route Toward Efficient and Robust Distributed Bragg Reflectors for Light Management Applications

Journal

ADVANCED OPTICAL MATERIALS
Volume 2, Issue 11, Pages 1105-1112

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adom.201400292

Keywords

light trapping; distributed bragg reflectors; sol-gels; porous materials; dielectric coatings

Ask authors/readers for more resources

The optimization of functional optical devices requires the appropriate control of light propagation, which can be achieved by using engineered dielectric structures. Innovative materials combination and fabrication strategies are required to achieve a robust gain in performance without impacting manufacturing complexity and cost. In the present work, a novel liquid-based approach is proposed for the simple and scalable fabrication of highly efficient and robust optical multilayer dielectric coatings. In particular, a sol-gel process is developed that enables the fabrication of large-area distributed Bragg reflectors (DBR) integrating macroporous materials of controlled closed porosity. The DBRs have a very high index contrast, excellent and tunable optical properties, and high stability of performance and structural integrity with respect to crack formation and delamination, even against harsh ageing tests or solvent exposure. The potential of this approach to be integrated within existing optoelectronic architectures is demonstrated through the integration of a DBR structure as a back reflector in an amorphous silicon solar cell (a-Si:H), resulting in a significant increase in light absorption, photocurrent, and overall efficiency. This opens the way towards simple dielectric engineering of robust photoactive devices based on the versatile use of liquid routes for the deposition of structured dielectric coatings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available