4.6 Article

Morphology and Thermal Properties of Renewable Resource-Based Polymer Blend Nanocomposites Influenced by a Reactive Compatibilizer

Journal

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
Volume 2, Issue 3, Pages 377-386

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/sc400395s

Keywords

PLA; PHB; Blend nanocomposites; OMMT

Ask authors/readers for more resources

Partially miscible blends of poly(lactic acid) (PLA) and poly(hydroxybutyrate) (PHB) have been prepared by the melt mixing method. An interpenetrating network structure created by a maleic anhydride (MA) compatibilizer imparted additional interactions between the two matrices, which has resulted in increased miscibility within the blends. A modified interface has been characterized using morphological analysis through FT-IR and SEM analysis. Because MA compatibilization distributed flexible intermolecular hydrogen bonding within the blend matrix, elongation at break and Izod impact strength has been reported at a maximum of 540.17% and 99%, respectively, compared to those of the PLA matrix. Further, incorporation of layered silicates within the optimized composition of the PLA/PHB/MA blend modified the tensile strength by 49%, without compromising its superior flexible characteristics. Simultaneously, the renowned thermal insulating property of exfoliated/intercalated layered silicate works well to promote the thermal stability of the blend as well. Because two different nanoclays have been utilized in the present investigation, a comparative account of the extent of the intercalation/exfoliation has been reported through morphological analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available