4.6 Article

In-Situ and Numerical Investigation of Groundwater Inrush Hazard from Grouted Karst Collapse Pillar in Longwall Mining

Journal

WATER
Volume 10, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/w10091187

Keywords

groundwater inrush hazard; coal pillar instability; strata deformation; floor-pillar-roof system; numerical model

Funding

  1. National Natural Science Foundation of China [51804339]
  2. Open Project of Research Center of Coal Resources Safe Mining and Clean Utilization, Liaoning [LNTU17KF03]

Ask authors/readers for more resources

Groundwater inrush is a typical hydrologic natural hazard in mining engineering. Since 2000 to 2012, there have been 1110 types of mine groundwater inrush hazards with 4444 miners died or missing. As a general geological structure in the northern China coalfields, the karst collapse pillar (KCP) contains a significant amount of granular rocks, which can be easily migrated under high hydraulic pressure. Therefore, the KCP zone acts as an important groundwater inrush pathway in underground mining. Grouting the KCP zone can mitigate the risk of groundwater inrush hazard. However, the fracture or instability of the coal pillar near KCP can cause the instability of surrounding rock and even groundwater inrush hazard. To evaluate the risk of groundwater inrush from the aquifer that is caused by coal pillars instability within grouted KCP in a gob, an in-situ investigation on the deformation of the surrounding strata was conducted. Besides, a mechanical model for the continuous effect on the coal pillar with the floor-pillar-roof system was established; then, a numerical model was built to evaluate the continuous instability and groundwater inrush risk. The collective energy and stiffness in the floor-pillar-roof system are the two criterions for judging the stability of the system. As a basic factor to keep the stability of floor-pillar-roof system, the collective energy in coal pillar is larger than that in floor-roof system. Moreover, if the stiffness of floor-roof or coal pillar meets a negative value, the system will lose stability; thus, the groundwater inrush pathway will be produced. However, if there is a negative value occurring in floor-pillar-roof system meets, it indicates that the system structure is situated in a damage state; a narrower coal pillar will enlarge the risk of continuous instability in the system, leading to a groundwater inrush pathway easily. Continuous coal pillars show a lower probability of instability. Conversely, the fractured coal pillars have a greater probability of failure. The plastic zone and deformation of the roadway roof in the fractured coal pillar are larger than that of continuous coal pillar, indicating that the continuous coal pillars mitigate the risk of groundwater inrush hazard effectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available