4.6 Article

Constructed Wetlands for Combined Sewer Overflow Treatment-Comparison of German, French and Italian Approaches

Journal

WATER
Volume 5, Issue 1, Pages 1-12

Publisher

MDPI AG
DOI: 10.3390/w5010001

Keywords

combined sewer overflow; constructed wetlands; design; layout; international comparison; simulation

Ask authors/readers for more resources

Combined sewer systems are designed to transport stormwater surface run off in addition to the dry weather flows up to defined limits. In most European countries, hydraulic loads greater than the design flow are discharged directly into receiving water bodies, with minimal treatment (screening, sedimentation), or with no treatment at all. One feasible solution to prevent receiving waters from strong negative impacts seems to be the application of vertical flow constructed wetlands. In Germany, first attempts to use this ecological technology were recognized in early 1990s. Since then, further development continued until a high level of treatment performance was reached. During recent years the national state-of-the-art (defined in 2005) was adapted in other European countries, including France and Italy. Against the background of differing national requirements in combined sewer system design, substantial developmental steps were taken. The use of coarser filter media in combination with alternating loadings of separated filter beds allows direct feedings with untreated combined runoff. Permanent water storage in deep layers of the wetland improves the system's robustness against extended dry periods, but contains operational risks. Besides similar functions (but different designs and layouts), correct dimensioning of all approaches suffers from uncertainties in long-term rainfall predictions as well as inside sewer system simulation tools.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available