4.6 Article

Sulfonylurea Receptor 1 Contributes to the Astrocyte Swelling and Brain Edema in Acute Liver Failure

Journal

TRANSLATIONAL STROKE RESEARCH
Volume 5, Issue 1, Pages 28-37

Publisher

SPRINGER
DOI: 10.1007/s12975-014-0328-z

Keywords

Ammonia; Acute liver failure; Astrocyte swelling; Brain edema; Glibenclamide; NCCa-ATP channel; Sulfonylurea receptor type 1 protein

Funding

  1. Department of Veterans Affairs
  2. National Institutes of Health [DK063311]

Ask authors/readers for more resources

Astrocyte swelling (cytotoxic brain edema) is the major neurological complication of acute liver failure (ALF), a condition in which ammonia has been strongly implicated in its etiology. Ion channels and transporters are known to be involved in cell volume regulation, and a disturbance in these systems may result in cell swelling. One ion channel known to contribute to astrocyte swelling/brain edema in other neurological disorders is the ATP-dependent, nonselective cation (NCCa-ATP) channel. We therefore examined its potential role in the astrocyte swelling/brain edema associated with ALF. Cultured astrocytes treated with 5 mM ammonia showed a threefold increase in the sulfonylurea receptor type 1 (SUR1) protein expression, a marker of NCCa-ATP channel activity. Blocking SUR1 with glibenclamide significantly reduced the ammonia-induced cell swelling in cultured astrocytes. Additionally, overexpression of SUR1 in ammonia-treated cultured astrocytes was significantly reduced by cotreatment of cells with BAY 11-7082, an inhibitor of NF-kappa B, indicating the involvement of an NF-kappa B-mediated SUR1 upregulation in the mechanism of ammonia-induced astrocyte swelling. Brain SUR1 mRNA level was also found to be increased in the thioacetamide (TAA) rat model of ALF. Additionally, we found a significant increase in SUR1 protein expression in rat brain cortical astrocytes in TAA-treated rats. Treatment with glibenclamide significantly reduced the brain edema in this model of ALF. These findings strongly suggest the involvement of NCCa-ATP channel in the astrocyte swelling/brain edema in ALF and that targeting this channel may represent a useful approach for the treatment of the brain edema associated with ALF.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available