4.7 Article

Land-Use Carbon Emissions Estimation for the Yangtze River Delta Urban Agglomeration Using 1994-2016 Landsat Image Data

Journal

REMOTE SENSING
Volume 10, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/rs10091334

Keywords

carbon dioxide; urban agglomeration; Yangtze River Delta; Landsat; land-use; spatial autocorrelation

Funding

  1. Fundamental Research Funds for the Central Universities [2018ZDPY07]

Ask authors/readers for more resources

The amount and growth rate of carbon emissions have been accelerated on a global scale since the industrial revolution (1800), especially in recent decades. This has resulted in a significant influence on the natural environment and human societies. Therefore, carbon emission reduction receives continuously increasing public attention and has long been under debate. In this study, we made use of the land-use specific carbon emission coefficients from previous studies and estimated the land-use carbon emissions and carbon intensities of the Yangtze River Delta Urban Agglomeration (YRDUA)-which consists of 26 eastern Chinese cities-from Landsat image data and socio-economic statistics in 1995, 2005, and 2015. In addition, spatial autocorrelation models including both global and local Moran's I were used to analyze the spatial autocorrelation of carbon emissions and carbon intensities. It was found that (1) the YRDUA witnessed a rapidly increasing trend for net carbon emissions and a decreasing trend for carbon intensity over the two decades; (2) the spatial differences in carbon intensity had gradually narrowed, but were large in carbon emissions and had gradually increased; and (3) the carbon emissions in 2005 and 2015 had significant spatial autocorrelations. We concluded that (1) from 1995 to 2015 in the YRDUA, carbon emissions were large for the cities along the Yangtze River and carbon intensities were high for Anhui province's resource-based cities, while both carbon emissions and carbon intensities were small for Zhejiang province's cities; (2) over two decades, the increase in carbon emissions from urban land was approximately twice the increase in urban land area. Our study can provide useful insights into the assignment of carbon reduction tasks within the YRDUA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available