4.7 Article

Error Analysis on ESA's Envisat ASAR Wave Mode Significant Wave Height Retrievals Using Triple Collocation Model

Journal

REMOTE SENSING
Volume 6, Issue 12, Pages 12217-12233

Publisher

MDPI AG
DOI: 10.3390/rs61212217

Keywords

Envisat ASAR; significant wave height; validation; triple collocation

Funding

  1. Dragon-3 project [10412]
  2. China Scholarship Council (CSC)
  3. State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration of China [SOED1410]

Ask authors/readers for more resources

Nowadays, spaceborne Synthetic Aperture Radar (SAR) has become a powerful tool for providing significant wave height (SWH). Traditionally, validation of SAR derived SWH has been carried out against buoy measurements or model outputs, which only yield an inter-comparison, but not an absolute validation. In this study, the triple collocation error model has been introduced in the validation of Envisat ASAR derived SWH products. SWH retrievals from ASAR wave mode using ESA's algorithm are validated against in situ buoy data, and wave model hindcast results from WaveWatch III wave model, covering a period of six years. From the triple collocation validation analysis, the impacts of the collocation distance and water depth on the error of ASAR SWH are discussed. It is found that the error of Envisat ASAR SWH product is linear to the collocation distance, and decrease with the decreasing collocation distance. Using the linear regression fit method, the absolute error of Envisat ASAR SWH was obtained with zero collocation distance. The absolute Envisat ASAR wave height error of 0.49 m is presented in deep and open ocean from this triple collocation validation work, in contrast to a larger error of 0.56 m in coastal and shallow waters. One of the reasons for the larger Envisat ASAR SWH errors in the coastal waters may be the inaccurate Modulation Transfer Function (MTF) adopted in the Envisat ASAR wave retrieval algorithm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available