4.7 Article

A Novel in Situ FPAR Measurement Method for Low Canopy Vegetation Based on a Digital Camera and Reference Panel

Journal

REMOTE SENSING
Volume 5, Issue 1, Pages 274-281

Publisher

MDPI AG
DOI: 10.3390/rs5010274

Keywords

FPAR; digital camera; classification; reference panel

Funding

  1. National Basic Research Program of China [2010CB951701]
  2. National Natural Science Foundation of China [41201354, 41222008]

Ask authors/readers for more resources

The fraction of absorbed photosynthetically active radiation (FPAR) is a key parameter in describing the exchange of fluxes of energy, mass and momentum between the surface and atmosphere. In this study, we present a method to measure FPAR using a digital camera and a reference panel. A digital camera was used to capture color images of low canopy vegetation, which contained a reference panel in one corner of the field of view (FOV). The digital image was classified into photosynthetically active vegetation, ground litter, sunlit soil, shadow soil, and the reference panel. The relative intensity of the incident photosynthetically active radiation (PAR), scene-reflected PAR, exposed background absorbed PAR and the green vegetation-covered ground absorbed PAR were derived from the digital camera image, and then FPAR was calculated. This method was validated on eight plots with four vegetation species using FPAR measured by a SunScan instrument. A linear correlation with a coefficient of determination (R-2) of 0.942 and mean absolute error (MAE) of 0.031 was observed between FPAR values derived from the digital camera and measurement using the SunScan instrument. The result suggests that the present method can be used to accurately measure the FPAR of low canopy vegetation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available