4.7 Article

Eucalyptus Biomass and Volume Estimation Using Interferometric and Polarimetric SAR Data

Journal

REMOTE SENSING
Volume 2, Issue 4, Pages 939-956

Publisher

MDPI
DOI: 10.3390/rs2040939

Keywords

radar remote sensing; SAR; eucalyptus stands; volume; biomass; forest inventory

Funding

  1. Nobrecel Celulose Papel S.A.
  2. Diametro Biometria & Inventario Florestal
  3. ORBISAT Aerolevantamento S.A.

Ask authors/readers for more resources

This work aims to establish a relationship between volume and biomass with interferometric and radiometric SAR (Synthetic Aperture Radar) response from planted Eucalyptus saligna forest stands, using multi-variable regression techniques. X and P band SAR images from the airborne OrbiSAR-1 sensor, were acquired at the study area in the southeast region of Brazil. The interferometric height (Hint = difference between interferometric digital elevation model in X and P bands), contributed to the models developed due to fact that Eucalyptus forest is composed of individuals whose structure is predominantly cylindrical and vertically oriented, and whose tree heights have great correlation with volume and biomass. The volume model showed that the stand volume was highly correlated with the interferometric height logarithm (Log(10)Hint), since Eucalyptus tree volume has a linear relationship with the vegetation height. The biomass model showed that the combination of both Hint(2) and Canopy Scattering Index-CSI (relation of sigma degrees(VV) by the sum of sigma degrees(VV) and sigma degrees(HH), which represents to the canopy interaction) were used in this model, due to the fact that the Eucalyptus biomass and the trees height relationship is not linear. Both models showed a prediction error of around 10% to estimate the Eucalyptus biomass and volume, which represents a great potential to use this kind of technology to help establish Eucalyptus forest inventory for large areas.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available