4.7 Article

New nsp8 isoform suggests mechanism for tuning viral RNA synthesis

Journal

PROTEIN & CELL
Volume 1, Issue 2, Pages 198-204

Publisher

SPRINGEROPEN
DOI: 10.1007/s13238-010-0028-8

Keywords

nsp8; SARS-CoV; RNA primase; viral life cycle

Categories

Funding

  1. Project 973 of the Ministry of Science and Technology of China [2006CB806503, 2007CB914301]
  2. National Natural Science Foundation of China [30221003, 30730022]

Ask authors/readers for more resources

During severe acute respiratory syndrome coronavirus (SARS-CoV) infection, the activity of the replication/transcription complexes (RTC) quickly peaks at 6 hours post infection (h.p.i) and then diminishes significantly in the late post-infection stages. This down-up-down regulation of RNA synthesis distinguishes different viral stages: primary translation, genome replication, and finally viron assembly. Regarding the nsp8 as the primase in RNA synthesis, we confirmed that the proteolysis product of the primase (nsp8) contains the globular domain (nsp8C), and indentified the resectioning site that is notably conserved in all the three groups of coronavirus. We subsequently crystallized the complex of SARS-CoV nsp8C and nsp7, and the 3-D structure of this domain revealed its capability to interfuse into the hexadecamer super-complex. This specific proteolysis may indicate one possible mechanism by which coronaviruses to switch from viral infection to genome replication and viral assembly stages.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available