4.7 Article

Effects of Additives on the Morphology and Performance of PPTA/PVDF in Situ Blend UF Membrane

Journal

POLYMERS
Volume 6, Issue 6, Pages 1846-1861

Publisher

MDPI
DOI: 10.3390/polym6061846

Keywords

poly(p-phenylene terephtalamide); poly(vinylidene fluoride); additive; membrane formation mechanism; morphology; separation performance

Funding

  1. National High Technology Research and Development Program of China (863 Program) [2012AA03A602]

Ask authors/readers for more resources

Poly(p-phenylene terephtalamide) (PPTA), a high-performance polymer with high modulus and good hydrophilicity, is often used as a reinforced material. However, due to its high crystallity, micro-phase separation often occurs in the blends. In this paper, PPTA/poly(vinylidene fluoride) (PVDF) compatible blend solution was synthesized by in situ polycondensation. Blend ultra-filtration membrane was prepared through the immersion phase inversion process. In order to obtain desired pore structure, the effects of different additives including hydrophilic polymer (polyethylene glycol (PEG)), inorganic salt (lithium chloride (LiCl)) and the surfactant (Tween-80) on the morphology and performance of PPTA/PVDF blend membranes were studied. The membrane formation process was investigated through ternary phase diagram (thermodynamics) and viscosities (kinetics) analysis. It was found that, with the increasing of LiCl content, a porous membrane structure with long finger-like pores was formed due to the accelerated demixing process which resulted in the increase of porosity and pore diameter as well as the enhancement of water flux and the decline of PEG rejection. When Tween content increased to over 3 wt%, dynamic viscosity became the main factor resulting in a decreased phase separation rate. The transfer of PEG and LiCl molecules onto membrane surface increased the surface hydrophilicity. The effect of Tween content on membrane hydrophilicity was also correlated with the compatibility of blend components.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available