4.7 Article

The Major Cellular Sterol Regulatory Pathway Is Required for Andes Virus Infection

Journal

PLOS PATHOGENS
Volume 10, Issue 2, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1003911

Keywords

-

Funding

  1. National Institutes of Health [R01AI081913, R01AI074951, U54AI057168, R01AI095500]
  2. NIH [T32AI055400, T32AI007324, T32GM007229, T32AI07632]
  3. Burroughs Wellcome Investigators in the Pathogenesis of Infectious Disease Award
  4. [R01 AI052845]
  5. [F32 AI106333]

Ask authors/readers for more resources

The Bunyaviridae comprise a large family of RNA viruses with worldwide distribution and includes the pathogenic New World hantavirus, Andes virus (ANDV). Host factors needed for hantavirus entry remain largely enigmatic and therapeutics are unavailable. To identify cellular requirements for ANDV infection, we performed two parallel genetic screens. Analysis of a large library of insertionally mutagenized human haploid cells and a siRNA genomic screen converged on components (SREBP-2, SCAP, S1P and S2P) of the sterol regulatory pathway as critically important for infection by ANDV. The significance of this pathway was confirmed using functionally deficient cells, TALEN-mediated gene disruption, RNA interference and pharmacologic inhibition. Disruption of sterol regulatory complex function impaired ANDV internalization without affecting virus binding. Pharmacologic manipulation of cholesterol levels demonstrated that ANDV entry is sensitive to changes in cellular cholesterol and raises the possibility that clinically approved regulators of sterol synthesis may prove useful for combating ANDV infection. Author Summary As obligate, intracellular parasites viruses are dependent upon the host cell for numerous factors and processes. However, for many important viruses few of the required host factors have been identified. Hantaviruses are rodent-borne viruses that are associated with severe human disease. Transmission to humans occurs sporadically with a recent notable example in Yosemite National park. In the present study, we utilized two independent genetic strategies to discover cellular factors needed for replication of the highly pathogenic hantavirus Andes virus. We found that four genes, encoding components of a complex involved in regulation of cholesterol synthesis and uptake, were critical for Andes virus infection. Drugs that inhibit an enzyme in this complex or that reduce cellular cholesterol levels effectively blocked Andes virus infection, suggesting new ways for combating this pathogenic virus.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available