4.7 Article

IscR Is Essential for Yersinia pseudotuberculosis Type III Secretion and Virulence

Journal

PLOS PATHOGENS
Volume 10, Issue 6, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1004194

Keywords

-

Funding

  1. National Institutes of Health [AI099747, GM045844]
  2. Hellman Fellows Program

Ask authors/readers for more resources

Type III secretion systems (T3SS) are essential for virulence in dozens of pathogens, but are not required for growth outside the host. Therefore, the T3SS of many bacterial species are under tight regulatory control. To increase our understanding of the molecular mechanisms behind T3SS regulation, we performed a transposon screen to identify genes important for T3SS function in the food-borne pathogen Yersinia pseudotuberculosis. We identified two unique transposon insertions in YPTB2860, a gene that displays 79% identity with the E. coli iron-sulfur cluster regulator, IscR. A Y. pseudotuberculosis iscR in-frame deletion mutant (DiscR) was deficient in secretion of Ysc T3SS effector proteins and in targeting macrophages through the T3SS. To determine the mechanism behind IscR control of the Ysc T3SS, we carried out transcriptome and bioinformatic analysis to identify Y. pseudotuberculosis genes regulated by IscR. We discovered a putative IscR binding motif upstream of the Y. pseudotuberculosis yscW-lcrF operon. As LcrF controls transcription of a number of critical T3SS genes in Yersinia, we hypothesized that Yersinia IscR may control the Ysc T3SS through LcrF. Indeed, purified IscR bound to the identified yscW-lcrF promoter motif and mRNA levels of lcrF and 24 other T3SS genes were reduced in Y. pseudotuberculosis in the absence of IscR. Importantly, mice orally infected with the Y. pseudotuberculosis DiscR mutant displayed decreased bacterial burden in Peyer's patches, mesenteric lymph nodes, spleens, and livers, indicating an essential role for IscR in Y. pseudotuberculosis virulence. This study presents the first characterization of Yersinia IscR and provides evidence that IscR is critical for virulence and type III secretion through direct regulation of the T3SS master regulator, LcrF.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available