4.7 Article

Male-Killing Spiroplasma Induces Sex-Specific Cell Death via Host Apoptotic Pathway

Journal

PLOS PATHOGENS
Volume 10, Issue 2, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1003956

Keywords

-

Funding

  1. Japan Society for the Promotion of Science (JSPS) [12J05307, 23580084]
  2. JSPS Fellowship for Young Scientists
  3. Grants-in-Aid for Scientific Research [12J05307, 23580084] Funding Source: KAKEN

Ask authors/readers for more resources

Some symbiotic bacteria cause remarkable reproductive phenotypes like cytoplasmic incompatibility and male-killing in their host insects. Molecular and cellular mechanisms underlying these symbiont-induced reproductive pathologies are of great interest but poorly understood. In this study, Drosophila melanogaster and its native Spiroplasma symbiont strain MSRO were investigated as to how the host's molecular, cellular and morphogenetic pathways are involved in the symbiont-induced male-killing during embryogenesis. TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) staining, anti-cleaved-Caspase-3 antibody staining, and apoptosis-deficient mutant analysis unequivocally demonstrated that the host's apoptotic pathway is involved in Spiroplasma-induced male-specific embryonic cell death. Double-staining with TUNEL and an antibody recognizing epidermal marker showed that embryonic epithelium is the main target of Spiroplasma-induced male-specific apoptosis. Immunostaining with antibodies against markers of differentiated and precursor neural cells visualized severe neural defects specifically in Spiroplasma-infected male embryos as reported in previous studies. However, few TUNEL signals were detected in the degenerate nervous tissues of male embryos, and the Spiroplasma-induced neural defects in male embryos were not suppressed in an apoptosis-deficient host mutant. These results suggest the possibility that the apoptosis-dependent epidermal cell death and the apoptosis-independent neural malformation may represent different mechanisms underlying the Spiroplasma-induced male-killing. Despite the male-specific progressive embryonic abnormality, Spiroplasma titers remained almost constant throughout the observed stages of embryonic development and across male and female embryos. Strikingly, a few Spiroplasma-infected embryos exhibited gynandromorphism, wherein apoptotic cell death was restricted to male cells. These observations suggest that neither quantity nor proliferation of Spiroplasma cells but some Spiroplasma-derived factor(s) may be responsible for the expression of the male-killing phenotype. Author Summary Symbiotic bacteria are ubiquitously associated with diverse insects, and affect their host biology in a variety of ways. In Drosophila fruit flies, infection with Spiroplasma symbionts often causes male-specific embryonic mortality, resulting in the production of all-female offspring. This striking phenotype is called male-killing, whose underlying mechanisms are of great interest. Here we investigated Drosophila melanogaster and its native Spiroplasma symbiont strain to understand how the host's molecular, cellular and morphogenetic pathways are involved in the symbiont-induced male-killing. Specifically in Spiroplasma-infected male embryos, pathogenic phenotypes including massive cell death throughout the body and neural malformation were observed. We unequivocally identified that the male-specific cell death preferentially occurs in the embryonic epithelium via the host's apoptotic pathway. Meanwhile, we found that, unexpectedly, the male-specific neural defects occur independently of host's apoptosis, suggesting that at least two different mechanisms may be involved in the Spiroplasma-induced male-killing. Also unexpected was the finding that Spiroplasma titers are almost constant throughout embryogenesis irrespective of sex despite the male-specific severe apoptosis. We serendipitously found Spiroplasma-infected sexual mosaic embryos, wherein apoptosis was associated with male cells, which suggests that some Spiroplasma-derived factor(s) may selectively act on male cells and cause male-killing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available