4.7 Article

Viral Mediated Redirection of NEMO/IKKγ to Autophagosomes Curtails the Inflammatory Cascade

Journal

PLOS PATHOGENS
Volume 8, Issue 2, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1002517

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft [BR1730/3-1]
  2. Wellcome Trust [WT066784, WT078824MF]
  3. Helmholtz Association

Ask authors/readers for more resources

The early host response to viral infections involves transient activation of pattern recognition receptors leading to an induction of inflammatory cytokines such as interleukin-1 beta (IL-1 beta) and tumor necrosis factor alpha (TNF alpha). Subsequent activation of cytokine receptors in an autocrine and paracrine manner results in an inflammatory cascade. The precise mechanisms by which viruses avert an inflammatory cascade are incompletely understood. Nuclear factor (NF)-kappa B is a central regulator of the inflammatory signaling cascade that is controlled by inhibitor of NF-kappa B (I kappa B) proteins and the I kappa B kinase (IKK) complex. In this study we show that murine cytomegalovirus inhibits the inflammatory cascade by blocking Toll-like receptor (TLR) and IL-1 receptor-dependent NF-kappa B activation. Inhibition occurs through an interaction of the viral M45 protein with the NF-kappa B essential modulator (NEMO), the regulatory subunit of the IKK complex. M45 induces proteasome-independent degradation of NEMO by targeting NEMO to autophagosomes for subsequent degradation in lysosomes. We propose that the selective and irreversible degradation of a central regulatory protein by autophagy represents a new viral strategy to dampen the inflammatory response.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available