4.7 Article

Insight into the Mechanisms of Adenovirus Capsid Disassembly from Studies of Defensin Neutralization

Journal

PLOS PATHOGENS
Volume 6, Issue 6, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1000959

Keywords

-

Funding

  1. NIH [F32 AI072936, K22 AI081870, T32 GM008320, EY11431, HL054352, AI042929]
  2. Scripps Research Institute [20521]
  3. NATIONAL EYE INSTITUTE [R01EY011431] Funding Source: NIH RePORTER
  4. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [R01HL054352] Funding Source: NIH RePORTER
  5. NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES [K22AI081870, R29AI042929, F32AI072936, R01AI042929, R01AI072732] Funding Source: NIH RePORTER
  6. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [T32GM008320] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Defensins are effectors of the innate immune response with potent antibacterial activity. Their role in antiviral immunity, particularly for non-enveloped viruses, is poorly understood. We recently found that human alpha-defensins inhibit human adenovirus (HAdV) by preventing virus uncoating and release of the endosomalytic protein VI during cell entry. Consequently, AdV remains trapped in the endosomal/lysosomal pathway rather than trafficking to the nucleus. To gain insight into the mechanism of defensin-mediated neutralization, we analyzed the specificity of the AdV-defensin interaction. Sensitivity to alpha-defensin neutralization is a common feature of HAdV species A, B1, B2, C, and E, whereas species D and F are resistant. Thousands of defensin molecules bind with low micromolar affinity to a sensitive serotype, but only a low level of binding is observed to resistant serotypes. Neutralization is dependent upon a correctly folded defensin molecule, suggesting that specific molecular interactions occur with the virion. CryoEM structural studies and protein sequence analysis led to a hypothesis that neutralization determinants are located in a region spanning the fiber and penton base proteins. This model was supported by infectivity studies using virus chimeras comprised of capsid proteins from sensitive and resistant serotypes. These findings suggest a mechanismin which defensin binding to critical sites on the AdV capsid prevents vertex removal and thereby blocks subsequent steps in uncoating that are required for release of protein VI and endosomalysis during infection. In addition to informing the mechanism of defensin-mediated neutralization of a non-enveloped virus, these studies provide insight into the mechanism of AdV uncoating and suggest new strategies to disrupt this process and inhibit infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available