4.5 Article

Loop-Mediated Isothermal Amplification (LAMP) Method for Rapid Detection of Trypanosoma brucei rhodesiense

Journal

PLOS NEGLECTED TROPICAL DISEASES
Volume 2, Issue 2, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pntd.0000147

Keywords

-

Funding

  1. Murdoch University, Australia
  2. Foundation for New Diagnostics (FIND), Geneva

Ask authors/readers for more resources

Loop-mediated isothermal amplification (LAMP) of DNA is a novel technique that rapidly amplifies target DNA under isothermal conditions. In the present study, a LAMP test was designed from the serum resistance-associated (SRA) gene of Trypanosoma brucei rhodesiense, the cause of the acute form of African sleeping sickness, and used to detect parasite DNA from processed and heat-treated infected blood samples. The SRA gene is specific to T. b. rhodesiense and has been shown to confer resistance to lysis by normal human serum. The assay was performed at 62 degrees C for 1 h, using six primers that recognised eight targets. The template was varying concentrations of trypanosome DNA and supernatant from heat-treated infected blood samples. The resulting amplicons were detected using SYTO-9 fluorescence dye in a real-time thermocycler, visual observation after the addition of SYBR Green I, and gel electrophoresis. DNA amplification was detected within 35 min. The SRA LAMP test had an unequivocal detection limit of one pg of purified DNA (equivalent to 10 trypanosomes/ml) and 0.1 pg (1 trypanosome/ml) using heat-treated buffy coat, while the detection limit for conventional SRA PCR was similar to 1,000 trypanosomes/ml. The expected LAMP amplicon was confirmed through restriction enzyme RsaI digestion, identical melt curves, and sequence analysis. The reproducibility of the SRA LAMP assay using water bath and heat-processed template, and the ease in results readout show great potential for the diagnosis of T. b. rhodesiense in endemic regions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available