4.6 Article

Acquisition of Aneuploidy Provides Increased Fitness during the Evolution of Antifungal Drug Resistance

Journal

PLOS GENETICS
Volume 5, Issue 10, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1000705

Keywords

-

Funding

  1. NIH [R01AI0624273, R01AI075096]
  2. Microbial and Plant Genomics Institute of MN Integrative Fellowship
  3. Burroughs Wellcome Fund Career Award in the Biomedical Sciences
  4. Canada Research Chair in Microbial Genomics and Infectious Disease
  5. Canadian Institutes of Health Research [MOP-86452]

Ask authors/readers for more resources

The evolution of drug resistance is an important process that affects clinical outcomes. Resistance to fluconazole, the most widely used antifungal, is often associated with acquired aneuploidy. Here we provide a longitudinal study of the prevalence and dynamics of gross chromosomal rearrangements, including aneuploidy, in the presence and absence of fluconazole during a well-controlled in vitro evolution experiment using Candida albicans, the most prevalent human fungal pathogen. While no aneuploidy was detected in any of the no-drug control populations, in all fluconazole-treated populations analyzed an isochromosome 5L [i(5L)] appeared soon after drug exposure. This isochromosome was associated with increased fitness in the presence of drug and, over time, became fixed in independent populations. In two separate cases, larger supernumerary chromosomes composed of i(5L) attached to an intact chromosome or chromosome fragment formed during exposure to the drug. Other aneuploidies, particularly trisomies of the smaller chromosomes (Chr3-7), appeared throughout the evolution experiment, and the accumulation of multiple aneuploid chromosomes per cell coincided with the highest resistance to fluconazole. Unlike the case in many other organisms, some isolates carrying i(5L) exhibited improved fitness in the presence, as well as in the absence, of fluconazole. The early appearance of aneuploidy is consistent with a model in which C. albicans becomes more permissive of chromosome rearrangements and segregation defects in the presence of fluconazole.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available