4.6 Article

Aging in a Long-Lived Clonal Tree

Journal

PLOS BIOLOGY
Volume 8, Issue 8, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pbio.1000454

Keywords

-

Funding

  1. NSERC
  2. Brink/McLean Grassland Conservation Fund
  3. UBC Zoology Computing Unit
  4. PEO
  5. Waterton Lakes National Parks

Ask authors/readers for more resources

From bacteria to multicellular animals, most organisms exhibit declines in survivorship or reproductive performance with increasing age (senescence'') [1,2]. Evidence for senescence in clonal plants, however, is scant [3,4]. During asexual growth, we expect that somatic mutations, which negatively impact sexual fitness, should accumulate and contribute to senescence, especially among long-lived clonal plants [5,6]. We tested whether older clones of Populus tremuloides (trembling aspen) from natural stands in British Columbia exhibited significantly reduced reproductive performance. Coupling molecular-based estimates of clone age with male fertility data, we observed a significant decline in the average number of viable pollen grains per catkin per ramet with increasing clone age in trembling aspen. We found that mutations reduced relative male fertility in clonal aspen populations by about 5.8x10(-5) to 1.6x10(-3) per year, leading to an 8% reduction in the number of viable pollen grains, on average, among the clones studied. The probability that an aspen lineage ultimately goes extinct rises as its male sexual fitness declines, suggesting that even long-lived clonal organisms are vulnerable to senescence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available