4.7 Article

Does Nonlinear Metrology Offer Improved Resolution? Answers from Quantum Information Theory

Journal

PHYSICAL REVIEW X
Volume 2, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.2.041006

Keywords

-

Funding

  1. ARC [DP0986503]
  2. Australian Research Council [DP0986503] Funding Source: Australian Research Council

Ask authors/readers for more resources

A number of authors have suggested that nonlinear interactions can enhance resolution of phase shifts beyond the usual Heisenberg scaling of 1/n, where n is a measure of resources such as the number of subsystems of the probe state or the mean photon number of the probe state. These suggestions are based on calculations of local precision for particular nonlinear schemes. However, we show that there is no simple connection between the local precision and the average estimation error for these schemes, leading to a scaling puzzle. This puzzle is partially resolved by a careful analysis of iterative implementations of the suggested nonlinear schemes. However, it is shown that the suggested nonlinear schemes are still limited to an exponential scaling in root n. (This scaling may be compared to the exponential scaling in n which is achievable if multiple passes are allowed, even for linear schemes.) The question of whether nonlinear schemes may have a scaling advantage in the presence of loss is left open. Our results are based on a new bound for average estimation error that depends on (i) an entropic measure of the degree to which the probe state can encode a reference phase value, called the G asymmetry, and (ii) any prior information about the phase shift. This bound is asymptotically stronger than bounds based on the variance of the phase-shift generator. The G asymmetry is also shown to directly bound the average information gained per estimate. Our results hold for any prior distribution of the shift parameter, and generalize to estimates of any shift generated by an operator with discrete eigenvalues.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available