4.7 Article

Quantum Correlations in Mixed-State Metrology

Journal

PHYSICAL REVIEW X
Volume 1, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.1.021022

Keywords

-

Funding

  1. National Research Foundation
  2. Ministry of Education of Singapore

Ask authors/readers for more resources

We analyze the effects of quantum correlations, such as entanglement and discord, on the efficiency of phase estimation by studying four quantum circuits that can be readily implemented using NMR techniques. These circuits define a standard strategy of repeated single-qubit measurements, a classical strategy where only classical correlations are allowed, and two quantum strategies where nonclassical correlations are allowed. In addition to counting space (number of qubits) and time (number of gates) requirements, we introduce mixedness as a key constraint of the experiment. We compare the efficiency of the four strategies as a function of the mixedness parameter. We find that the quantum strategy gives root N enhancement over the standard strategy for the same amount of mixedness. This result applies even for highly mixed states that have nonclassical correlations but no entanglement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available