4.4 Article

Elevation of brain magnesium prevents synaptic loss and reverses cognitive deficits in Alzheimer's disease mouse model

Journal

MOLECULAR BRAIN
Volume 7, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/s13041-014-0065-y

Keywords

Alzheimer's disease; Brain magnesium; Synaptoprotection; NMDAR signaling; BACE1

Categories

Funding

  1. National Basic Research Program of China (973 program) [2009CB941303, 2011CB302201, 2013CB835102]
  2. National Natural Science Foundation of China (NSFC) [81270048/H3101, 30970957]

Ask authors/readers for more resources

Background: Profound synapse loss is one of the major pathological hallmarks associated with Alzheimer's disease, which might underlie memory impairment. Our previous work demonstrates that magnesium ion is a critical factor in controlling synapse density/plasticity. Here, we tested whether elevation of brain magnesium, using a recently developed compound (magnesium-L-threonate, MgT), can ameliorate the AD-like pathologies and cognitive deficits in the APPswe/PS1dE9 mice, a transgenic mouse model of Alzheimer's disease. Results: MgT treatment reduced A beta-plaque, prevented synapse loss and memory decline in the transgenic mice. Strikingly, MgT treatment was effective even when the treatment was given to the mice at the end-stage of their Alzheimer's disease-like pathological progression. To explore how elevation of brain magnesium ameliorates the AD-like pathologies in the brain of transgenic mice, we studied molecules critical for APP metabolism and signaling pathways implicated in synaptic plasticity/density. In the transgenic mice, the NMDAR signaling pathway was downregulated, while the BACE1 expression were upregulated. MgT treatment prevented the impairment of these signaling pathways, stabilized BACE1 expression and reduced sAPP beta and beta-CTF in the transgenic mice. At the molecular level, elevation of extracellular magnesium prevented the high A beta-induced reductions in synaptic NMDARs by preventing calcineurin overactivation in hippocampal slices. Conclusions: Our results suggest that elevation of brain magnesium exerts substantial synaptoprotective effects in a mouse model of Alzheimer's disease, and hence it might have therapeutic potential for treating Alzheimer's disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available