4.4 Article

Rapid synaptic potentiation within the anterior cingulate cortex mediates trace fear learning

Journal

MOLECULAR BRAIN
Volume 5, Issue -, Pages -

Publisher

BIOMED CENTRAL LTD
DOI: 10.1186/1756-6606-5-6

Keywords

fear learning; memory consolidation; ACC; GluA1; NMDA; Ca2+ permeable AMPARs

Categories

Funding

  1. EJLB-CIHR Michael Smith Chair in Neurosciences and Mental Health
  2. NSERC discovery grant [402555]
  3. E. Fidlar Ontario Graduate Scholarship
  4. Fragile x Research Foundation of Canada

Ask authors/readers for more resources

Although the cortex has been extensively studied in long-term memory storage, less emphasis has been placed on immediate cortical contributions to fear memory formation. AMPA receptor plasticity is strongly implicated in learning and memory, and studies have identified calcium permeable AMPA receptors (CP-AMPARs) as mediators of synaptic strengthening. Trace fear learning engages the anterior cingulate cortex (ACC), but whether plastic events occur within the ACC in response to trace fear learning, and whether GluN2B subunits are required remains unknown. Here we show that the ACC is necessary for trace fear learning, and shows a rapid 20% upregulation of membrane AMPA receptor GluA1 subunits that is evident immediately after conditioning. Inhibition of NMDA receptor GluN2B subunits during training prevented the upregulation, and disrupted trace fear memory retrieval 48 h later. Furthermore, intra-ACC injections of the CP-AMPAR channel antagonist, 1-naphthylacetyl spermine (NASPM) immediately following trace fear conditioning blocked 24 h fear memory retrieval. Accordingly, whole cell patch clamp recordings from c-fos positive and c-fos negative neurons within the ACC in response to trace fear learning revealed an increased sensitivity to NASPM in recently activated neurons that was reversed by reconsolidation update extinction. Our results suggest that trace fear learning is mediated through rapid GluN2B dependent trafficking of CP-AMPARs, and present in vivo evidence that CP-AMPAR activity within the ACC immediately after conditioning is necessary for subsequent memory consolidation processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available