4.4 Article

On different photodecomposition behaviors of rhodamine B on laponite and montmorillonite clay under visible light irradiation

Journal

JOURNAL OF SAUDI CHEMICAL SOCIETY
Volume 18, Issue 4, Pages 308-316

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jscs.2013.11.006

Keywords

Clay; Rhodamine B; Photocatalysis; Visible light

Funding

  1. KAUST
  2. Sabic Post-doctoral Fellowship

Ask authors/readers for more resources

In this study, laponite and montmorillonite clays were found to be able to decompose rhodamine B upon visible light irradiation (lambda > 420 nm). Very interestingly, it was found that rhodamine B on laponite underwent a stepwise N-deethylation and its decomposition was terminated once rhodamine 110, as a decomposition product, was formed, whereas the same phenomenon was not observed for rhodamine B on montmorillonite, whose decomposition involved chromophore destruction. Mechanistic study revealed that the different photodecomposition behaviors of rhodamine B on laponite and montmorillonite were attributed to the oxidation by different reactive oxygen species, with laponite involving HO2 center dot/O-2(center dot-) while montmorillonite involving (OH)-O-center dot. It was also found that the degradation pathway of rhodamine B on laponite switched from N-deethylation to chromophore destruction when solution pH was changed from 7.0 to 3.0, which was attributed to a much higher fraction of HO2 center dot relative to O-2(center dot-), under pH 3.0 than under pH 7.0. Based on the results, a mechanism of rhodamine dye decomposition on clay under visible light was proposed, involving the clay as an electron acceptor, electron relay between the adsorbed dye molecules and oxygen molecules, and subsequent reactions between the generated dye radical cations and different reactive oxygen species. The results of this study shed light on how to best utilize visible light for organic pollutant degradation on clays within engineered treatment systems as well as on many of naturally occurring pollutant degradation processes in soils and air involving clay. (C) 2013 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available