4.4 Article

Reliability of Spatiotemporal Asymmetry During Overground Walking for Individuals Following Chronic Stroke

Journal

JOURNAL OF NEUROLOGIC PHYSICAL THERAPY
Volume 35, Issue 3, Pages 116-121

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/NPT.0b013e318227fe70

Keywords

cerebrovascular accident; gait; reliability; symmetry

Funding

  1. Foundation for Physical Therapy, Inc.
  2. American Heart Association

Ask authors/readers for more resources

Background and Purpose: Rehabilitation research for individuals with chronic stroke is increasingly addressing spatiotemporal asymmetries (STA). Understanding the reliability of STA between sessions is essential for determining whether treatment responses exceed day-to-day variation. The purpose of this study was to determine the minimal detectable change (MDC) and test-retest reliability in STA and gait speed measures for individuals with chronic stroke. Methods: Twenty-six individuals with chronic (> 6 months) stroke participated in 2 visits. At each visit, participants walked across a 14-ft (4.3-m) GAITRite mat at comfortable gait speed (CGS) and fast gait speed (FGS). Spatiotemporal asymmetries ratios (paretic/nonparetic limb) were calculated for step length, stance time, and swing time. Intraclass correlation coefficients (ICC, 2,1) were calculated to determine reliability between sessions. Minimal detectable change values were calculated to determine the smallest change that is considered real. Results: Spatiotemporal asymmetry measures were consistent between sessions, with ICCs ranging from 0.93 to 0.98. Asymmetry ratio MDC values were calculated for step length (CGS: 0.15; FGS: 0.19), swing time (CGS: 0.26; FGS: 0.20), and stance time (CGS: 0.09; FGS: 0.10). Gait speed MDC was 0.20 m/s and 0.22 m/s, respectively, for the CGS and FGS walking conditions. Discussion and Conclusion: There were considerable differences among MDC values for the various STA measures, suggesting that larger changes will be necessary to show improvement for certain measures (eg, swing time asymmetry). These data will assist with setting clinical goals for patients with chronic stroke and will be useful for evaluating interventions designed to minimize temporal and spatial interlimb asymmetries during walking.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available