4.5 Article

Thermo-electrical buckling of piezoelectric functionally graded material Timoshenko beams

Journal

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10999-011-9158-2

Keywords

Thermal buckling; Piezoelectric layers; Bifurcation buckling; Timoshenko beam theory

Funding

  1. National Elite Foundation

Ask authors/readers for more resources

In this article, buckling analysis of functionally graded material (FGM) beams with or without surface-bonded piezoelectric layers subjected to both thermal loading and constant voltage is studied. Thermal and mechanical properties of FGM layer is assumed to follow the power law distribution in thickness direction, except Poisson's ratio which is considered constant. The Timoshenko beam theory and nonlinear strain-displacement relations are used to obtain the governing equations of piezoelectric FGM beam. Beam is assumed under three types of thermal loading and various types of boundary conditions. For each case of boundary conditions, existence of bifurcation-type buckling is examined and for each case of thermal loading and boundary conditions, closed-form solutions are obtained which are easily usable for engineers and designers. The effects of the applied actuator voltage, beam geometry, boundary conditions, and power law index of FGM beam on critical buckling temperature difference are examined.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available