4.7 Article

Using transcriptomics to identify and validate novel biomarkers of human skeletal muscle cancer cachexia

Journal

GENOME MEDICINE
Volume 2, Issue -, Pages -

Publisher

BIOMED CENTRAL LTD
DOI: 10.1186/gm122

Keywords

-

Funding

  1. Affymetrix Translational Medicine award
  2. Swedish Sport Foundation
  3. Heriot-Watt University
  4. CRUK
  5. UICC ICRETT Fellowship
  6. Capacity Building Grant (SUPAC) from the NCRI
  7. Swedish Research Council [04210, 14244]
  8. Karolinska Research Foundation
  9. Karolinska University Hospital Research Funds
  10. Swedish Cancer Society
  11. University of Aberdeen
  12. University of Dundee
  13. University of Edinburgh
  14. University of Glasgow
  15. Health Board (Grampian)
  16. Health Board (Tayside)
  17. Health Board (Lothian)
  18. Health Board (Greater Glasgow)
  19. Health Board (Clyde)
  20. Scottish Enterprise
  21. Wyeth Pharmaceuticals
  22. European Research Council under the EU [204135]
  23. Medical Research Council [G0700711B] Funding Source: researchfish

Ask authors/readers for more resources

Background: Cancer cachexia is a multi-organ tissue wasting syndrome that contributes to morbidity and mortality in many cancer patients. Skeletal muscle loss represents an established key feature yet there is no molecular understanding of the disease process. In fact, the postulated molecular regulators of cancer cachexia originate largely from pre-clinical models and it is unclear how these translate to the clinical environment. Methods: Rectus abdominis muscle biopsies were obtained from 65 upper gastrointestinal (UGI) cancer patients during open surgery and RNA profiling was performed on a subset of this cohort (n = 21) using the Affymetrix U133+2 platform. Quantitative analysis revealed a gene signature, which underwent technical validation and independent confirmation in a separate clinical cohort. Results: Quantitative significance analysis of microarrays produced an 83-gene signature that was able to identify patients with greater than 5% weight loss, while this molecular profile was unrelated to markers of systemic inflammation. Selected genes correlating with weight loss were validated using quantitative real-time PCR and independently studied as general cachexia biomarkers in diaphragm and vastus lateralis from a second cohort (n = 13; UGI cancer patients). CaMKII beta correlated positively with weight loss in all muscle groups and CaMKII protein levels were elevated in rectus abdominis. TIE1 was also positively associated with weight loss in both rectus abdominis and vastus lateralis muscle groups while other biomarkers demonstrated tissue-specific expression patterns. Candidates selected from the pre-clinical literature, including FOXO protein and ubiquitin E3 ligases, were not related to weight loss in this human clinical study. Furthermore, promoter analysis identified that the 83 weight loss-associated genes had fewer FOXO binding sites than expected by chance. Conclusion: We were able to discover and validate new molecular biomarkers of human cancer cachexia. The exercise activated genes CaMKII beta and TIE1 related positively to weight-loss across muscle groups, indicating that this cachexia signature is not simply due to patient inactivity. Indeed, excessive CaMKII beta activation is a potential mechanism for reduced muscle protein synthesis. Our genomics analysis also supports the view that the available preclinical models do not accurately reflect the molecular characteristics of human muscle from cancer cachexia patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available