4.6 Article

NK3 receptor agonism reinstates temporal order memory in the hemiparkinsonian rat

Journal

BEHAVIOURAL BRAIN RESEARCH
Volume 285, Issue -, Pages 208-212

Publisher

ELSEVIER
DOI: 10.1016/j.bbr.2014.06.006

Keywords

Parkinson's disease; 6-OHDA; NK3 receptor; Senktide; Temporal order memory

Funding

  1. German National Science Foundation
  2. Deutsche Forschungsgemeischaft
  3. DFG [SO 1032/2-5]

Ask authors/readers for more resources

Animals treated with unilateral 6-hydroxydopamine (6-ODHA) injections, an animal model of Parkinson's disease, exhibit deficits in memory for temporal order, but show intact novel object recognition. Since senktide, a potent neurokinin-3 receptor (NK3-R) agonist, has been shown to have promnestic effects in the aged rat and to alleviate scopolamine-induced impairment, the present study aimed to assess possible promnestic effects of senktide in the hemiparkinsonian rat model. Animals received unilateral 6-ODHA microinjections into the medial forebrain bundle. Two weeks later, they were randomly assigned to treatment with vehicle, 0.2, or 0.4 mg/kg senktide. Temporal order memory and place recognition tests were conducted, locomotor activity and turning behavior were assessed in the open field and anxiety-related behavior was measured in the light-dark box. Treatments were administered 30 min prior to behavioral testing with an interval of seven days between tests. The animals treated with 0.2 mg/kg senktide exhibited temporal order memory, unlike the vehicle-treated group. No significant treatment effects were found in the open field and light-dark box. Administration of 0.2 mg/kg senktide may influence the prefrontal cortex and hippocampus, leading to compensations for deficits in memory for temporal order. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available