4.3 Article

Comparison of Electro-Catalytic Activity of Fe-Ni-Co/C and Pd/C Nanoparticles for Glucose Electro-Oxidation in Alkaline Half-Cell and Direct Glucose Fuel Cell

Journal

ELECTROCATALYSIS
Volume 9, Issue 6, Pages 735-743

Publisher

SPRINGER
DOI: 10.1007/s12678-018-0483-1

Keywords

Glucose oxidation reaction; Non-noble metal electro-catalyst; Electro-catalyst activity; Direct glucose fuel cell

Funding

  1. Isfahan University of Technology
  2. Iranian Nanotechnology Initiative Council
  3. Iranian Fuel Cell Steering
  4. INSF [96017107]

Ask authors/readers for more resources

In this paper, the performance of a non-noble metal anode catalyst (Fe-Ni-Co/C) is evaluated and compared with Pd/C electro-catalyst toward the glucose oxidation reaction in the alkaline half-cell and direct glucose fuel cell (DGFC). The electro-oxidation of glucose on Fe-Ni-Co/C and Pd/C is characterized in the half-cell by cyclic voltammetry (CV) and chronoamperometery (CA) techniques. Results indicate that Fe-Ni-Co/C has higher activity and lower tolerance against poisoning intermediate products for glucose oxidation in the alkaline media than that of Pd/C electro-catalyst. Polarization curves of passive air breathing alkaline DGFC show that the DGFC equipped with a Fe-Ni-Co/C anode catalyst produces higher maximum power density (MPD) and open circuit voltage (OCV) compared to a DGFC which employed Pd/C at the anode side; 23 mW cm(-2) and 0.93 V versus 14 mW cm(-2) and 0.65 V. These results are related to the remarkable activity of Fe-Ni-Co/C electro-catalyst toward glucose oxidation under the alkaline media. Electrochemical impedance response of both cells demonstrates that the DGFC equipped with Fe-Ni-Co/C has lower charge and mass transfer resistance compared to the DGFC equipped with Pd/C.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available