4.3 Article

Oxygen Reduction Reaction on Platinum-Terminated Onion-structured Alloy Catalysts

Journal

ELECTROCATALYSIS
Volume 3, Issue 3-4, Pages 192-202

Publisher

SPRINGER
DOI: 10.1007/s12678-012-0087-0

Keywords

Density functional theory; Oxygen reduction; Operating potential; Layered metal structures; Sabatier analysis; Activity

Funding

  1. DOE-BES, Division of Chemical Sciences
  2. Air Products & Chemicals, Inc.
  3. Department of Energy's Office of Biological and Environmental Research located at PNNL
  4. U.S. Department of Energy, Office of Science [DE-AC02-06CH11357, DEAC05-00OR22725, DE-AC02-05CH11231]

Ask authors/readers for more resources

Using periodic, self-consistent density functional theory (GGA-PW91) calculations, a series of onion-structured metal alloys have been investigated for their catalytic performance towards the oxygen reduction reaction (ORR). The onion-structures consist of a varying number of atomic layers of one or two metals each, pseudomorphically deposited on top of one another to form the overall structure. All catalysts studied feature a Pt overlayer, and often consist of at least one Pd layer below the surface. Three distinct ORR mechanisms were analyzed on the close-packed facets of all the structures considered. These mechanisms include a direct route of O-2 dissociation and two hydrogen-assisted routes of O-O bond-breaking in peroxyl (OOH) and in hydrogen peroxide (HOOH) intermediates. A thermochemical analysis of the elementary steps provides information on the operating potential, and thereby energy efficiency of each electrocatalyst. A Sabatier analysis of catalytic activity based on thermochemistry of proton/electron transfer steps and activation energy barrier for O-O bond-breaking steps leads to a volcano relation between the surfaces' activity and the binding energy of O. Several of the onion-structured alloys studied here show promise for achieving energy efficiency higher than that of Pt, by being active at potentials higher than the operating potential of Pt. Furthermore, some have at least as good activity as pure Pt at that operating potential. Thus, a number of the onion-structured alloys studied here are promising as cathode electrocatalysts in proton exchange membrane fuel cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available