4.5 Article

Egg incubation temperature differently affects female and male hatching dynamics and larval fitness in a leafhopper

Journal

ECOLOGY AND EVOLUTION
Volume 2, Issue 4, Pages 732-739

Publisher

WILEY
DOI: 10.1002/ece3.89

Keywords

Grape; insect vector; operational sex ratio; protandry; Scaphoideus titanus; sex ratio

Funding

  1. Conseil Interprofessionnel des Vins de Bordeaux
  2. Region Aquitaine
  3. INRA SPE

Ask authors/readers for more resources

Temperature effects on ectotherms are widely studied particularly in insects. However, the life-history effects of temperature experienced during a window of embryonic development, that is egg stage, have rarely been considered. We simulated fluctuating temperatures and examined how this affects the operational sex ratio (OSR) of hatching as well as nymph and adult fitness in a leafhopper, Scaphoideus titanus. Specifically, after a warm or cold incubation we compared males and females hatching dynamics with their consequences on the sex ratio in the course of time, body size, weight, and developmental rate of the two populations, all reared on the same posthatching temperature. Males and females eggs respond differently, with females more sensitive to variation in incubation temperature. The different responses of both sexes have consequences on the sex ratio dynamic of hatchings with a weaker protandry after warm incubation. Temperatures experienced by eggs have more complex consequences on posthatching development. Later nymphal instars that hatched from eggs exposed to warm temperature were larger and bigger but developmental rate of the two populations was not affected. Our study demonstrates how incubation temperature could affect operational sex ratio and posthatching development in an insect and how this may be critical for population growth.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available