4.8 Article

An Iml3-Chl4 Heterodimer Links the Core Centromere to Factors Required for Accurate Chromosome Segregation

Journal

CELL REPORTS
Volume 5, Issue 1, Pages 29-36

Publisher

CELL PRESS
DOI: 10.1016/j.celrep.2013.08.036

Keywords

-

Categories

Funding

  1. National Science Foundation
  2. Howard Hughes Medical Institute

Ask authors/readers for more resources

Accurate segregation of genetic material in eukaryotes relies on the kinetochore, a multiprotein complex that connects centromeric DNA with microtubules. In yeast and humans, two proteins-Mif2/CENP-C and Chl4/CNEP-N-interact with specialized centromeric nucleosomes and establish distinct but cross-connecting axes of chromatin-microtubule linkage. Proteins recruited by Chl4/CENP-N include a subset that regulates chromosome transmission fidelity. We show that Chl4 and a conserved member of this subset, Iml3, both from Saccharomyces cerevisiae, form a stable protein complex that interacts with Mif2 and Sgo1. We have determined the structures of an Iml3 homodimer and an Iml3-Chl4 heterodimer, which suggest a mechanism for regulating the assembly of this functional axis of the kinetochore. We propose that at the core centromere, the Chl4-Iml3 complex participates in recruiting factors, such as Sgo1, that influence sister chromatid cohesion and encourage sister kinetochore biorientation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available