4.4 Article

Residue-free fabrication of high-performance graphene devices by patterned PMMA stencil mask

Journal

AIP ADVANCES
Volume 4, Issue 6, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4884305

Keywords

-

Funding

  1. National Science Council of Taiwan [NSC 101-2112-M-001-020-MY2]

Ask authors/readers for more resources

Two-dimensional (2D) atomic crystals and their hybrid structures have recently attracted much attention due to their potential applications. The fabrication of metallic contacts or nanostructures on 2D materials is very common and generally achieved by performing electron-beam (e-beam) lithography. However, e-beam lithography is not applicable in certain situations, e. g., cases in which the e-beam resist does not adhere to the substrates or the intrinsic properties of the 2D materials are greatly altered and degraded. Here, we present a residue-free approach for fabricating high-performance graphene devices by patterning a thin film of e-beam resist as a stencil mask. This technique can be generally applied to substrates with varying surface conditions, while causing negligible residues on graphene. The technique also preserves the design flexibility offered by e-beam lithography and therefore allows us to fabricate multi-probe metallic contacts. The graphene field-effect transistors fabricated by this method exhibit smooth surfaces, high mobility, and distinct magnetotransport properties, confirming the advantages and versatility of the presented residue-free technique for the fabrication of devices composed of 2D materials. (C) 2014 Author(s).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available