4.4 Article

Molecular beam epitaxial growth of Bi2Te3 and Sb2Te3 topological insulators on GaAs (111) substrates: a potential route to fabricate topological insulator p-n junction

Journal

AIP ADVANCES
Volume 3, Issue 7, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4815972

Keywords

-

Funding

  1. NSF [DMR-0520550]
  2. National Basic Research Program of China [2013CB934600]
  3. National Natural Science Foundation of China [11174007, 11222434]
  4. Penn State MR-SEC under NSF [DMR-0820404]

Ask authors/readers for more resources

High quality Bi2Te3 and Sb2Te3 topological insulators films were epitaxially grown on GaAs (111) substrate using solid source molecular beam epitaxy. Their growth and behavior on both vicinal and non-vicinal GaAs (111) substrates were investigated by reflection high-energy electron diffraction, atomic force microscopy, X-ray diffraction, and high resolution transmission electron microscopy. It is found that non-vicinal GaAs (111) substrate is better than a vicinal substrate to provide high quality Bi2Te3 and Sb2Te3 films. Hall and magnetoresistance measurements indicate that p type Sb2Te3 and n type Bi2Te3 topological insulator films can be directly grown on a GaAs (111) substrate, which may pave a way to fabricate topological insulator p-n junction on the same substrate, compatible with the fabrication process of present semiconductor optoelectronic devices. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available