4.7 Article

Peptide-Gold Nanoparticle Hybrids as Promising Anti-Inflammatory Nanotherapeutics for Acute Lung Injury: In Vivo Efficacy, Biodistribution, and Clearance

Journal

ADVANCED HEALTHCARE MATERIALS
Volume 7, Issue 19, Pages -

Publisher

WILEY
DOI: 10.1002/adhm.201800510

Keywords

acute lung injury; anti-inflammatory therapeutics; biodistribution; gold nanoparticles; Toll-like receptor signaling

Funding

  1. National Natural Science Foundation of China [81770070, 81470265]
  2. Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning [TP2016014]
  3. Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support [20171923]
  4. starting fund from Shanghai General Hospital

Ask authors/readers for more resources

Gold nanoparticles (GNPs) have shown great promises in various biomedical applications. Although GNPs exhibit excellent therapeutic efficacy in in vitro and in vivo in numerous studies, there still exists significant biosafety concerns, mainly for their nonbiodegradability and tendency to be trapped in the liver and spleen. To tackle this problem, hexapeptides are utilized to modify the GNP surface to not only impart them with potent anti-inflammatory activity, but also facilitate their rapid clearance in vivo. Previously, a unique class of peptide-GNP hybrids that potently inhibit multiple TLR signaling pathways in macrophages was identified; in this work, it is further demonstrated that these hybrids, after intratracheal instillation, are capable of effectively reducing lung inflammation and injury by decreasing neutrophil infiltration and increasing the number of regulatory T cells in the lung in a lipopolysaccharide-induced acute lung injury (ALI) mouse model. More importantly, these hybrids can be effectively excreted 26 h post-administration with only 8.49 +/- 0.70% of them remaining in the body, primarily in the lung and intestine and less than 0.03% accumulated in the liver and spleen. This work provides strong evidences that properly designed peptide-GNP hybrids can serve as the next generation of effective and safe anti-inflammatory nanotherapeutics to treat ALI.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available