4.7 Review

Combinatorial Biosynthesis of Cyclic Lipopeptide Antibiotics: A Model for Synthetic Biology To Accelerate the Evolution of Secondary Metabolite Biosynthetic Pathways

Journal

ACS SYNTHETIC BIOLOGY
Volume 3, Issue 10, Pages 748-758

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/sb3000673

Keywords

A54145; BAC cloning; combinatorial biosynthesis; daptomycin; genetic engineering; phi BT1 att/int; phi C31 att/int; Streptomyces cloning hosts

Ask authors/readers for more resources

Nonribosomal peptide synthetases (NRPSs) are giant multi-enzymes that carry out sequencial assembly line couplings of amino acids to generate linear or cyclic peptides. NRPSs are composed of repeating enzyme domains with modular organization to activate and couple specific amino acids in a particular order. From a synthetic biology perspective, they can be considered as peptide assembly machines composed of devices to couple fatty acids to L-amino acids, L-amino acids to L-amino acids, and D-amino acids to L-amino acids. The coupling devices are composed of specific parts that contain two or more enzyme domains that can be exchanged combinatorially to generate novel peptide assembly machines to produce novel peptides. The potent lipopeptide antibiotics daptomycin and A54145E have identical cyclic depsipeptide rings structures and stereochemistry but have divergent amino acid sequences. As their biosynthetic gene clusters are derived from an ancient ancestral lipopetide pathway, these lipopeptides provided an attractive model to develop combinatorial biosynthesis to generate antibiotics superior to daptomycin. These studies on combinatorial biosynthesis have helped generate guidelines for the successful assembly of NRPS parts and devices that can be used to generate novel lipopeptide structures and have established a basis for future synthetic biology studies to further develop combinatorial biosynthesis as a robust approach to natural product drug discovery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available