4.7 Article

Ultrafine Cellulose Nanofibers as Efficient Adsorbents for Removal of UO22+ in Water

Journal

ACS MACRO LETTERS
Volume 1, Issue 1, Pages 213-216

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/mz200047q

Keywords

-

Funding

  1. National Science Foundation [DMR-1019370]

Ask authors/readers for more resources

Ultrafine cellulose nanofibers, 5-10 nm in diameter, were prepared from oxidation of wood pulp using the (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO)/NaBr/NaClO process followed by mechanical treatment, Carboxylate groups on the surface of these nanofibers provide negative charges, which are very effective to adsorb radioactive UO22+ in water, evidenced by static adsorption and high resolution transmission electron microscopy (TEM) measurements. The UO22+ adsorption capability of ultrafine cellulose nanofibers was about 167 mg/g, which is 2-3 times higher than those of typical adsorbents such as montmorillonite, ion imprinted polymer particles, modified silica particles/fibrous membranes, and hydrogels. The high UO22+ adsorption capability can be attributed to the very high surface-to-volume ratio, high surface charge density, and hydrophilicity of ultrafine cellulose nanofibers, which can be used as effective media to remove radioactive metals from radio-nuclear wastewater.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available