4.2 Article

The characteristics of geoelectric fields at Kakioka, Kanoya, and Memambetsu inferred from voltage measurements during 2000 to 2011

Journal

EARTH PLANETS AND SPACE
Volume 67, Issue -, Pages -

Publisher

SPRINGEROPEN
DOI: 10.1186/s40623-015-0241-z

Keywords

Geoelectric field; Kakioka; Memambetsu; Kanoya; Electromagnetic induction; Conductivity distribution; Geomagnetically induced current

Ask authors/readers for more resources

Geoelectric voltages have been continuously observed at Kakioka, Kanoya, and Memambetsu for more than 50 years. The geoelectric fields obtained at the three sites for a recent 11-year period (2000 to 2011) were examined. The fields are mainly induced by variations in the geomagnetic field at periods of less than 10(5) s. The instability of the observation system causes a long-term trend in the longer period band. This long-term trend can be estimated and removed using the robust Kalman filter procedure which we modified to accommodate data containing outliers. The magnetotelluric (MT) impedance at the three sites was estimated using the original geoelectric field and the geomagnetic field at periods of 6 to 10(4) s, and the period was extended to 10(7) s at Kakioka and Memambetsu. Although the geomagnetically induced currents (GIC) at these sites may potentially be estimated using the MT impedance and geomagnetic data (if technological network information is available), the distortion effect should be corrected in order to obtain the correct regional geoelectric field. The eastward component of the geoelectric field at Kakioka shows a severe distortion effect, and the amplification factor was estimated to be approximately 10 from comparison with the C response at Kakioka. Conversely, the distortion effect on the eastward component of the geoelectric field at Memambetsu is almost none. The amplification factor for the northward component of the geoelectric field has not been estimated because of the lack of an independent response for comparison, although the MT response indicates a potentially large distortion at Memambetsu. Numerical modeling would be a useful tool to enable an improved estimation of this distortion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available