4.2 Article

Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil

Journal

SOIL RESEARCH
Volume 50, Issue 3, Pages 216-221

Publisher

CSIRO PUBLISHING
DOI: 10.1071/SR11316

Keywords

black carbon; charcoal; dissolved organic nitrogen; DON; mineralisation

Categories

Funding

  1. Grains Research and Development Corporation (GRDC)

Ask authors/readers for more resources

Nitrogen (N) leaching from coarse-textured soils frequently leads to productivity losses and negative environmental consequences. Historically, clay amendment has been used on coarse-textured soils to decrease water repellence and nutrient leaching. More recently, biochar has been proposed as an alternative soil amendment to decrease N leaching while simultaneously storing carbon. As biochar has a greater nutrient-retention capacity, we hypothesised that biochar derived from Eucalyptus marginata would be a more effective amendment than clay at minimising N leaching. The soil used was a coarse-textured agricultural sand with the following treatments: (1) biochar incorporated homogenously into the 0-10 cm soil layer, (2) clay incorporated similarly, (3) biochar added as a layer at 10 cm depth, (4) clay added similarly, or (5) a control. Amendments were added at 25 t/ha and watered periodically over 21 days and watered with the equivalent to 30 mm. Clay and biochar amendments significantly decreased cumulative NH4+ leaching by similar to 20% and NO(3)(-)leaching by 25%. Biochar decreased NO(3)(-)leaching significantly more than clay, possibly due to decreased nitrification. Dissolved organic N leaching was not influenced by any treatment. Leaching of N was unaffected by amendment application method. We conclude that to decrease N leaching, land managers should apply the most readily available of the amendments in the most convenient manner.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available