4.7 Article

Stressful conditions reveal decrease in size, modification of shape but relatively stable asymmetry in bumblebee wings

Journal

SCIENTIFIC REPORTS
Volume 8, Issue -, Pages -

Publisher

NATURE RESEARCH
DOI: 10.1038/s41598-018-33429-4

Keywords

-

Funding

  1. Fonds de la Recherche Scientifique - FNRS under EOS Project [30947854]
  2. Fonds Wetenschappelijk Onderzoek - Vlaanderen (FWO) under EOS Project [30947854]
  3. FRFC [2461310]
  4. Belgian Fonds pour la Recherche dans l'Industrie et l'Agriculture (FRIA)
  5. FNRS grant fellowship Charge de recherches

Ask authors/readers for more resources

Human activities can generate a wide variety of direct and indirect effects on animals, which can manifest as environmental and genetic stressors. Several phenotypic markers have been proposed as indicators of these stressful conditions but have displayed contrasting results, depending, among others, on the phenotypic trait measured. Knowing the worldwide decline of multiple bumblebee species, it is important to understand these stressors and link them with the drivers of decline. We assessed the impact of several stressors (i.e. natural toxin-, parasite-, thermic- and inbreeding-stress) on both wing shape and size and their variability as well as their directional and fluctuating asymmetries. The total data set includes 650 individuals of Bombus terrestris (Hymenoptera: Apidae). Overall wing size and shape were affected by all the tested stressors. Except for the sinigrin (e.g. glucosinolate) stress, each stress implies a decrease of wing size. Size variance was affected by several stressors, contrary to shape variance that was affected by none of them. Although wing size directional and fluctuating asymmetries were significantly affected by sinigrin, parasites and high temperatures, neither directional nor fluctuating shape asymmetry was significantly affected by any tested stressor. Parasites and high temperatures led to the strongest phenotype modifications. Overall size and shape were the most sensitive morphological traits, which contrasts with the common view that fluctuating asymmetry is the major phenotypic marker of stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available