4.7 Article

Diversity and characteristics of colonization of root-associated fungi of Vaccinium uliginosum

Journal

SCIENTIFIC REPORTS
Volume 8, Issue -, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-018-33634-1

Keywords

-

Funding

  1. National Natural Science Foundation of China [31670605, 31300573, 31200517]
  2. Fundamental Research Funds for the Central Universities [2572017DA07]
  3. Natural Science Foundation of Heilongjiang Province [LC2016005]

Ask authors/readers for more resources

This study investigated ericoid mycorrhizal fungi (EMF) diversity in Vaccinium uliginosum across its main wild distribution range in China. Fungal communities in hair roots of V. uliginosum were analyzed using Illumina MiSeq sequencing. Only 22 OTUs were assigned to putative EMF genera. Rhizoscyphus and Meliniomyces dominated EMF communities, followed by Clavaria, Oidiodendron, Lachnum, Acephala, and Phialocephala. There were more dark septate endophytes (DSE) reads from the Greater Khingan Mountains than from other study areas, similar to the results of the percent colonization of DSE by the magnified intersections method. Overall, high-throughput sequencing data provided a rough community-scale sketch of root-associated fungi of V. uliginosum. Two hundred and eighty slow-growing isolates were isolated from root pieces of V. uliginosum, and the isolates matched 16 fungal genera on the basis of morphological and internal transcribed spacer sequence comparison. The isolates of Cryptosporiopsis ericae, Oidiodendron maius, Lachnum sp., Sordariomycetes sp., and Pleosporales sp., formed ericoid hyphal coils via resynthesis trails. The co-existence between EMF and DSE in hair roots was observed via trypan blue staining. A putative model for the co-existence between EMF and DSE in the hair roots of V. uliginosum was proposed. We suggest that under certain environmental stresses, such as low temperature and poor available nutrients, ericoid plants may favor co-colonization by both DSE and EMF.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available