4.7 Article

Suboptimal Coding Metasurfaces for Terahertz Diffuse Scattering

Journal

SCIENTIFIC REPORTS
Volume 8, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-30375-z

Keywords

-

Ask authors/readers for more resources

Coding metasurfaces, composed of only two types of elements arranged according to a binary code, are attracting a steadily increasing interest in many application scenarios. In this study, we apply this concept to attain diffuse scattering at THz frequencies. Building up on previously derived theoretical results, we carry out a suboptimal metasurface design based on a simple, deterministic and computationally inexpensive algorithm that can be applied to arbitrarily large structures. For experimental validation, we fabricate and characterize three prototypes working at 1 THz, which, in accordance with numerical predictions, exhibit significant reductions of the radar cross-section, with reasonably good frequency and angular stability. Besides the radar-signature control, our results may also find potentially interesting applications to diffusive imaging, computational imaging, and (scaled to optical wavelengths) photovoltaics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available