4.7 Article

Mutations causing low level antibiotic resistance ensure bacterial survival in antibiotic-treated hosts

Journal

SCIENTIFIC REPORTS
Volume 8, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-30972-y

Keywords

-

Funding

  1. Novo Nordisk Foundation [NNF12OC1015920]
  2. Rigshospitalets Rammebevilling [R88-A3537]
  3. Lundbeckfonden [R167-2013-15229]
  4. Novo Nordisk Fonden [NNF15OC0017444]
  5. RegionH Rammebevilling [R144-A5287]
  6. Novo Nordisk Foundation Center for Biosustainability (CfB)
  7. Novo Nordisk Fonden [NNF15OC0017444] Funding Source: researchfish

Ask authors/readers for more resources

In 474 genome sequenced Pseudomonas aeruginosa isolates from 34 cystic fibrosis (CF) patients, 40% of these harbor mutations in the mexZ gene encoding a negative regulator of the MexXY-OprM efflux pump associated with aminoglycoside and fluoroquinolone resistance. Surprisingly, resistance to aminoglycosides and fluoroquinolones of mexZ mutants was far below the breakpoint of clinical resistance. However, the fitness increase of the mutant bacteria in presence of the relevant antibiotics, as demonstrated in competition experiments between mutant and ancestor bacteria, showed that 1) very small phenotypic changes cause significant fitness increase with severe adaptive consequences, and 2) standardized phenotypic tests fail to detect such low-level variations. The frequent appearance of P. aeruginosa mexZ mutants in CF patients is directly connected to the intense use of the target antibiotics, and low-level antibiotic resistance, if left unnoticed, can result in accumulation of additional genetic changes leading to high-level resistance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available