4.7 Article

The energetic behaviour of the human foot across a range of running speeds

Journal

SCIENTIFIC REPORTS
Volume 8, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-28946-1

Keywords

-

Funding

  1. National Health & Medical Research Council of Australia Peter Doherty Fellowship

Ask authors/readers for more resources

The human foot contains passive elastic tissues that have spring-like qualities, storing and returning mechanical energy and other tissues that behave as dampers, dissipating energy. Additionally the intrinsic and extrinsic foot muscles have the capacity to act as dampers and motors, dissipating and generating mechanical energy. It remains unknown as to how the contribution of all passive and active tissues combine to produce the overall energetic function of the foot during running. Therefore, the aim of this study was to determine if the foot behaves globally as an active spring-damper during running. Fourteen participants ran on a force-instrumented treadmill at 2.2 ms(-1), 3.3 ms(-1) and 4.4 ms(-1), while foot segment motion was collected simultaneously with kinetic measurements. A unified deformable segment model was applied to quantify the instantaneous power of the foot segment during ground contact and mechanical work was calculated by integrating the foot power data. At all running speeds, the foot absorbed energy from early stance through to mid-stance and subsequently returned/generated a proportion of this energy in late stance. The magnitude of negative work performed increased with running speed, while the magnitude of positive work remained relatively constant across all running speeds. The proportion of energy dissipated relative to that absorbed (foot dissipation-ratio) was always greater than zero and increased with running speed, suggesting that the foot behaves as a viscous spring-damper.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available