4.7 Article

Efficient and synergistic removal of tetracycline and Cu(II) using novel magnetic multi-amine resins

Journal

SCIENTIFIC REPORTS
Volume 8, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-23205-9

Keywords

-

Funding

  1. National Natural Science Foundation of P.R. China [51522805]
  2. Environmental protection research project of Jiangsu Province [2016014, 2015009]
  3. Jiangsu province key laboratory of environmental engineering research foundation

Ask authors/readers for more resources

A series of magnetic multi-amine resins (MMARs, named E1D9-E9D1) was proposed for the removal of tetracycline (TC) and Cu(II) in sole and binary solutions. Results showed that the N content of the resins increased sharply from 1.7% to 15.49%, and the BET surface areas decreased from 1433.4 m(2)/g to 8.9 m(2)/g with methyl acrylate ratio increasing from E1D9 to E9D1. Their adsorption capacities for TC and Cu(II) could reach 0.243 and 0.453 mmol/g, respectively. The adsorption isotherms of TC onto MMARs transformed from heterogeneous adsorption to monolayer-type adsorption with DVB monomer ratio in resin matrix decrease, suggesting the dominant physical adsorption between TC and benzene rings. TC adsorption capacity onto E9D1 was higher than that onto E7D3 when the equilibrium concentration of TC exceeded 0.043 mmol/L because the electrostatic interaction between negatively charged groups of TC and protonated amines of adsorbents could compensate for the capacity loss resulting from BET surface area decrease. In the binary system, the electrostatic interaction between negatively charged TC-Cu(II) complex and protonated amines of adsorbents was responsible for the synergistic adsorption onto E7D3 and E9D1. The XPS spectra of magnetic resins before and after adsorption were characterized to prove the probable adsorption mechanisms. This work provides alternative adsorbent for the efficient treatment of multiple pollution with different concentrations of organic micropollutants and heavy metal ions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available