4.7 Article

Preparation of Permanent Magnetic Resin Crosslinking by Diallyl Itaconate and Its Adsorptive and Anti-fouling Behaviors for Humic Acid Removal

Journal

SCIENTIFIC REPORTS
Volume 7, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-17360-8

Keywords

-

Funding

  1. National Natural Science Foundation of China [51438008, 51678289, 51408299]
  2. Natural Science Foundation of Jiangsu Province [BK20140608]
  3. Postgraduate Research & Practice Innovation Program of Jiangsu Province [KYCX17_0032]
  4. European Union's Horizon H Research and Innovation program MADFORWATER [688320]

Ask authors/readers for more resources

In this research, a series of permanent magnetic anion exchange resins (MAERs) were prepared by polymerizing glycidyl methacrylate monomer and crosslinking diallyl itaconate (DAI) and divinylbenzene. The properties and performances of these novel MAERs were systematically characterized and evaluated for humic acid (HA) adsorption by batch experiments. With the increase of DAI content from 0 to 15%, the moisture of MAERs was elevated from 50.23% to 68.53%, along with the adsorption capacity increasing from 2.57 to 3.14 mmol g(-1). As the concentrations of co-existing cation (Ca2+ and Mg2+) increased, the adsorption amounts of HA dropped drastically at first and increased a little at high cation concentrations. Although ion exchange was the primary mechanism for HA adsorption, other physical interactions and electrostatic attraction between HA molecules and newly formed oxonium group also played significant roles for HA adsorption. The MAERs could be efficiently regenerated by a mixture of NaCl/NaOH solution (10%/1%), and notably, the MAER-3 with the highest DAI content displayed unapparent loss of adsorption capacity during twenty-one successive adsorption-desorption cycles. These results suggested a novel resin adsorbent for its excellent performances on adsorption, regeneration, and sedimentation in water treatment for natural organic matter removal.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available