4.7 Article

Myocardial metabolic alterations in mice with diet-induced atherosclerosis: linking sulfur amino acid and lipid metabolism

Journal

SCIENTIFIC REPORTS
Volume 7, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-13991-z

Keywords

-

Funding

  1. National Research Foundation (NRF) of Korea [2013M3A9B6046418, 2016R1A2B3007119, 2016R1A4A1011451]
  2. National Research Council of Science and Technology [DRC-14-3-KBSI, CAP-2012-2-KBSI]
  3. Korea Basic Science Institute [T37415]
  4. National Research Foundation of Korea [2016R1A2B3007119] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Atherosclerosis is a leading cause of cardiovascular disease (CVD), but the effect of diet on the atherosclerotic heart's metabolism is unclear. We used an integrated metabolomics and lipidomics approach to evaluate metabolic perturbations in heart and serum from mice fed an atherogenic diet (AD) for 8, 16, and 25 weeks. Nuclear magnetic resonance (NMR)-based metabolomics revealed significant changes in sulfur amino acid (SAA) and lipid metabolism in heart from AD mice compared with heart from normal diet mice. Higher SAA levels in AD mice were quantitatively verified using liquid chromatography-mass spectrometry (LC/MS). Lipidomic profiling revealed that fatty acid and triglyceride (TG) levels in the AD group were altered depending on the degree of unsaturation. Additionally, levels of SCD1, SREBP-1, and PPAR. were reduced in AD mice after 25 weeks, while levels of reactive oxygen species were elevated. The results suggest that a long-term AD leads to SAA metabolism dysregulation and increased oxidative stress in the heart, causing SCD1 activity suppression and accumulation of toxic TGs with a low degree of unsaturation. These findings demonstrate that the SAA metabolic pathway is a promising therapeutic target for CVD treatment and that metabolomics can be used to investigate the metabolic signature of atherosclerosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available